We report a simple but detailed solution 13C nuclear magnetic resonance spectroscopic study of atomically precise neutral Au25(SR)180 (SR = alkyl thiolate) clusters. The paramagnetic 13C Knight shift of alkyl chain carbons, which is proportional to the local electron spin density, exhibits an electron spin delocalization that exponentially decays along the alkyl chain. The magnitude and decay constant of the observed electron spin delocalization, although largely independent of alkyl chain length, depend on where, that is, "in" versus "out" (vide infra) position, the alkyl chain is bound, in agreement with density functional theory calculations. Notably, the determined position-dependent decay constants, 1.70/Å and 0.41/Å for "in" and "out" ligands, respectively, not only could have important ramifications in molecular spintronics but are also comparable to measured decay constants in molecular electrical conductance of alkyl chains, potentially offering an alternative, simple method for estimating the latter. Moreover, the negative intercept temperatures of linear fits of reciprocal 13C (as well its bound 1H) Knight shift versus temperature strongly suggest the existence of local ferrimagnetism in individual Au25(SR)180 clusters.