Long Noncoding RNA Taurine-Upregulated Gene 1 Knockdown Protects Cardiomyocytes Against Hypoxia/Reoxygenation-induced Injury Through Regulating miR-532-5p/Sox8 Axis

J Cardiovasc Pharmacol. 2020 Nov;76(5):556-563. doi: 10.1097/FJC.0000000000000895.

Abstract

Background: Long noncoding RNA taurine-upregulated gene 1 (TUG1) has been reported to involve in the processing of cardiac ischemia/reperfusion injury after myocardial infarction. Thus, this study further investigates the underlying mechanisms of TUG1 in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury in vitro.

Methods: Cell viability, apoptosis, and migration and invasion were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, and transwell assay, respectively. Western blot was used to examine the levels of matrix metallopeptidase 9, matrix metallopeptidase 2, and sex determining region Y-box transcription factor 8 (Sox8) protein. Levels of lactate dehydrogenase, malondialdehyde, superoxide dismutase, and glutathione peroxidase were detected using commercial kits. Levels of TUG1, microRNA-532-5p (miR-532-5p), and Sox8 were detected by quantitative real-time polymerase chain reaction. The interaction between miR-532-5p and Sox8 or TUG1 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assay.

Results: H/R induced rat cardiomyocyte H9c2 injury by inhibiting cell viability, migration and invasion, promoting cell apoptosis, and stimulating oxidative stress. H/R-induced H9c2 injury upregulated the level of TUG1, and TUG1 knockdown alleviated H/R-induced cardiomyocyte injury. TUG1 directly bound to miR-532-5p, and miR-532-5p inhibition reversed the action of TUG1 knockdown on H/R-induced cardiomyocyte injury. Sox8 was a target of miR-532-5p, and miR-532-5p blunted H/R-induced cardiomyocyte injury by targeting Sox8. In addition, TUG1 knockdown inhibited H/R-induced Sox8 elevation through miR-532-5p in H9c2 cells.

Conclusion: TUG1 silence ameliorated H/R-induced cardiomyocytes injury through regulating miR-532-5p/Sox8 axis, suggesting a potential therapeutic target for preventing myocardial ischemia/reperfusion injury.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Cell Hypoxia
  • Cell Line
  • Cell Movement
  • Down-Regulation
  • Gene Knockdown Techniques
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Myocardial Reperfusion Injury / genetics
  • Myocardial Reperfusion Injury / metabolism*
  • Myocardial Reperfusion Injury / pathology
  • Myocytes, Cardiac / metabolism*
  • Myocytes, Cardiac / pathology
  • RNA, Long Noncoding / genetics
  • RNA, Long Noncoding / metabolism*
  • Rats
  • SOXE Transcription Factors / genetics
  • SOXE Transcription Factors / metabolism*
  • Signal Transduction

Substances

  • MIRN532 microRNA, rat
  • MicroRNAs
  • RNA, Long Noncoding
  • SOXE Transcription Factors
  • TUG1 long noncoding RNA, rat