Endogenous opioid system is involved in the maintenance of the intestinal homeostasis. Recently, we proved that stimulation of opioid receptors using P-317, a cyclic morphiceptin analog, resulted in the alleviation of acute colitis in mice. The aim of the current study was to assess the effect of P-317 during colitis and colitis-associated colorectal cancer in mice. Colitis was induced by addition of dextran sodium sulfate (DSS) into drinking water. Colitis-associated colorectal cancer was induced by a single intraperitoneal injection of azoxymethane (AOM) and subsequent addition of DSS into drinking water (week 2, 5, 8). During macroscopic damage evaluation the samples were collected and used for biochemical (MPO activity assay), molecular (qPCR and western blot) and histological studies. In experimental colitis, P-317 induced an anti-inflammatory response as indicated by macroscopic and microscopic scores. In the colitis-associated colorectal cancer model, a significant difference in colorectal tumor development was observed between vehicle- and P-317-treated mice. P-317 decreased the total number of colonic tumors and inhibited MPO activity. Hematoxylin and eosin staining confirmed anti-tumor activity of P-317. The expression of TNF-α was decreased in P-317-treated mice as compared to the vehicle-treated group. P-317 decreased proliferation as well as β-catenin expression in tumors. P-317, a mixed MOP and KOP receptor agonist, induced an anti-inflammatory response in experimental colitis and decreased tumor development in colitis-associated colorectal cancer in mice.
Keywords: Colitis; Colitis-associated colorectal cancer; Morphiceptin; Opioid; Opioid receptor.
Copyright © 2020 Elsevier B.V. All rights reserved.