Aim: To understand the progression of CLN1 disease and develop effective therapies we need to characterize early sites of pathology. Therefore, we performed a comprehensive evaluation of the nature and timing of early CLN1 disease pathology in the spinal cord, which appears especially vulnerable, and how this may affect behaviour.
Methods: We measured the spinal volume and neuronal number, and quantified glial activation, lymphocyte infiltration and oligodendrocyte maturation, as well as cytokine profile analysis during the early stages of pathology in Ppt1-deficient (Ppt1-/- ) mouse spinal cords. We then performed quantitative gait analysis and open-field behaviour tests to investigate the behavioural correlates during this period.
Results: We detected significant microglial activation in Ppt1-/- spinal cords at 1 month. This was followed by astrocytosis, selective interneuron loss, altered spinal volumes and oligodendrocyte maturation at 2 months, before significant storage material accumulation and lymphocyte infiltration at 3 months. The same time course was apparent for inflammatory cytokine expression that was altered as early as one month. There was a transient early period at 2 months when Ppt1-/- mice had a significantly altered gait that resembles the presentation in children with CLN1 disease. This occurred before an anticipated decline in overall locomotor performance across all ages.
Conclusion: These data reveal disease onset 2 months (25% of life-span) earlier than expected, while spinal maturation is still ongoing. Our multi-disciplinary data provide new insights into the spatio-temporal staging of CLN1 pathogenesis during ongoing postnatal maturation, and highlight the need to deliver therapies during the presymptomatic period.
Keywords: batten disease; gait; neurodegeneration; neuronal ceroid lipofuscinosis; postnatal development; spinal cord.
© 2020 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.