Multimodal Imaging of 2-Cycle PRRT with 177Lu-DOTA-JR11 and 177Lu-DOTATOC in an Orthotopic Neuroendocrine Xenograft Tumor Mouse Model

J Nucl Med. 2021 Mar;62(3):393-398. doi: 10.2967/jnumed.120.250274. Epub 2020 Aug 28.

Abstract

Peptide receptor radionuclide therapy (PRRT) using radiolabeled somatostatin receptor (SSTR) analogs is a common approach in advanced neuroendocrine neoplasms. Recently, SSTR antagonists have shown promising results for imaging and therapy due to a higher number of binding sites than in commonly used agonists. We evaluated PRRT with SSTR agonist 177Lu-DOTATOC and antagonist 177Lu-DOTA-JR11 longitudinally in an orthotopic murine pancreatic neuroendocrine neoplasm model expressing human SSTR2. Morphologic and metabolic changes during treatment were assessed using multimodal imaging, including hybrid PET/MRI and SPECT/CT. Methods: In vitro radioligand binding and internalization assays and cell-cycle analysis were performed. SSTR2-transfected BON cells (BON-SSTR2) were used for in vivo experiments. Tumor-bearing mice received 2 intravenous injections of 100 μL of saline, 30 MBq of 177Lu-DOTATOC, or 20 MBq of 177Lu-DOTA-JR11 with an interval of 3 wk. Weekly T2-weighted MRI was performed for tumor monitoring. Viability of the tumor tissue was assessed by 18F-FDG PET/MRI once after PRRT. Tumor and kidney uptake of the respective radiopharmaceuticals was measured 24 h after injection by SPECT/CT. Results: Compared with 177Lu-DOTATOC, 177Lu-DOTA-JR11 treatment resulted in an increased accumulation of cells in G2/M phase. Animals treated with the SSTR antagonist showed a significant reduction in tumor size (P < 0.001) and an increased median survival (207 d; interquartile range [IQR], 132-228) compared with 177Lu-DOTATOC (126 d; IQR, 118-129). SPECT/CT revealed a 4-fold higher median tumor uptake for the antagonist and a 3-fold higher tumor-to-kidney ratio in the first treatment cycle. During the second therapy cycle, tumor uptake of 177Lu-DOTATOC was significantly lower (P = 0.01) whereas 177Lu-DOTA-JR11 uptake remained stable. Imaging of tumor morphology indicated comparatively larger necrotic fractions for 177Lu-DOTA-JR11 despite further tumor growth. These results were confirmed by 18F-FDG PET, revealing the least amount of viable tumor tissue in 177Lu-DOTA-JR11-treated animals, at 6.2% (IQR, 2%-23%). Conclusion:177Lu-DOTA-JR11 showed a higher tumor-to-kidney ratio and a more pronounced cytotoxic effect than did 177Lu-DOTATOC. Additionally, tumor uptake was more stable over the course of 2 treatment cycles.

Keywords: 177Lu-DOTA-JR11; PET/MRI; SPECT/CT; multimodal imaging; peptide receptor radionuclide therapy; somatostatin receptor antagonist.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Transformation, Neoplastic*
  • Coordination Complexes / therapeutic use*
  • Humans
  • Magnetic Resonance Imaging
  • Mice
  • Multimodal Imaging*
  • Neuroendocrine Tumors / diagnostic imaging*
  • Neuroendocrine Tumors / metabolism
  • Neuroendocrine Tumors / pathology
  • Neuroendocrine Tumors / radiotherapy*
  • Octreotide / analogs & derivatives*
  • Octreotide / therapeutic use
  • Peptides, Cyclic / therapeutic use*
  • Positron-Emission Tomography
  • Receptors, Peptide / metabolism*
  • Single Photon Emission Computed Tomography Computed Tomography

Substances

  • 177Lu-octreotide, DOTA(0)-Tyr(3)-
  • Coordination Complexes
  • Peptides, Cyclic
  • Receptors, Peptide
  • 177Lu-DOTA-JR11
  • Octreotide