Relationship among the Crystal Structure, Texture, and Macroscopic Properties of Tetragonal (Pb,La)(Zr,Ti)O3 Ferroelectrics Investigated by In Situ High-Energy Synchrotron Diffraction

Inorg Chem. 2020 Sep 21;59(18):13632-13638. doi: 10.1021/acs.inorgchem.0c02002. Epub 2020 Aug 30.

Abstract

In situ diffraction investigations have played an important role in experimentally revealing the mechanism of piezoelectric and ferroelectric properties. In this study, a pure tetragonal ferroelectric ceramic of La-doped PbZr0.5Ti0.5O3 (LaPZT50) was investigated to eliminate the complex influence of phase coexistence. The electric field evolutions of the crystal structure, domain switching, and lattice deformation of the tetragonal phase have been revealed by in situ high-energy synchrotron X-ray diffraction. We found that the crystal structure of LaPZT50 is quite stable, showing a negligible change in the Pb-O bond length, unit cell volume, and spontaneous polarization upon application of an in situ external electric field. Importantly, the maximum macroscopic polarization of tetragonal LaPZT50 is defined by the 111-oriented grains. As determined by the intensity difference, the switching of non-180° domains plays a more significant role in contributing to the macroscopic strain than lattice deformation. These results further imply that the phase coexistence around the morphotropic phase boundary facilitates domain wall motion in the tetragonal phase and improves the ferroelectric and piezoelectric properties.