Fermented products with a pleasant aroma and with strong honey, rose, and fruit odor notes were developed through the biotransformation of a medium containing sour or sweet whey with the addition of l-phenylalanine by the Galactomyces geotrichum mold. In order to obtain the strong honey-rose aroma, G. geotrichum strains were screened and fermentation conditions were optimized to achieve a preferable ratio (>1) of phenylacetaldehyde to 2-phenylethanol by the Ehrlich pathway. This allowed post-fermentation products with the ratio of concentrations of phenylacetaldehyde to 2-phenylethanol being 1.7:1. Additionally, the use of gas chromatography-olfactometry (GC-O) analysis and the calculation of odor activity values (OAVs) allowed 10 key odorants to be identified in post-fermentation products. The highest OAVs were found for phenylacetaldehyde with a honey odor in both sour and sweet whey cultures (3010 and 1776, respectively). In the variant with sour whey, the following compounds with the highest OAVs were 3-methyl-1-butanol (131), 3-(methylthio)-propanal (119), 3-methylbutanal (90), dimethyl trisulfide (71), 2,3-butanedione (37), and 2-phenylethanol (29). In the post-fermentation product with sweet whey, the following compounds with the highest OAVs were 3-(methylthio)-propanal (112), dimethyl trisulfide (69), and 2,3-butanedione (41).
Keywords: GC−O; Galactomyces geotrichum; OAV; SIDA; aroma-active compounds; fermentation; whey.