Prostate cancer (PCa) is one of the most frequently diagnosed malignancies, and the fifth leading cause of cancer related mortality in men. For advanced PCa, radical prostatectomy, radiotherapy, and/or long-term androgen deprivation therapy are the recommended treatment options. However, subsequent progression to metastatic disease after initial therapy results in low 5-year survival rates (29%). Omics technologies enable the acquisition of high-resolution large datasets that can provide insights into molecular mechanisms underlying PCa pathology. For the purpose of this article, a systematic literature search was conducted through the Web of Science Database to critically evaluate recent omics-driven studies that were performed towards: (a) Biomarker development and (b) characterization of novel molecular-based therapeutic targets. The results indicate that multiple omics-based biomarkers with prognostic and predictive value have been validated in the context of PCa, with several of those being also available for commercial use. At the same time, omics-driven potential drug targets have been investigated in pre-clinical settings and even in clinical trials, holding the promise for improved clinical management of advanced PCa, as part of personalized medicine pipelines.
Keywords: biomarkers; drug targets; omics; prostate cancer.