Highly conductive nanometer-thick gold films grown on molybdenum disulfide surfaces for interconnect applications

Sci Rep. 2020 Sep 2;10(1):14463. doi: 10.1038/s41598-020-71520-x.

Abstract

Thin gold (Au) films (10 nm) are deposited on different substrates by using a e-beam deposition system. Compared with sapphire and SiO2 surfaces, longer migration length of the Au adatoms is observed on MoS2 surfaces, which helps in the formation of a single-crystal Au film on the MoS2 surface at 200 °C. The results have demonstrated that with the assistance of van der Waals epitaxy growth mode, single-crystal 3D metals can be grown on 2D material surfaces. With the improved crystalline quality and less significant Au grain coalescence on MoS2 surfaces, sheet resistance 2.9 Ω/sq is obtained for the thin 10 nm Au film at 100 °C, which is the lowest value reported in literature. The highly conductive thin metal film is advantageous for the application of backend interconnects for the electronic devices with reduced line widths.