A long non-coding RNA GATA6-AS1 adjacent to GATA6 is required for cardiomyocyte differentiation from human pluripotent stem cells

FASEB J. 2020 Nov;34(11):14336-14352. doi: 10.1096/fj.202000206R. Epub 2020 Sep 4.

Abstract

Long noncoding RNAs (lncRNAs) are crucial in many cellular processes, yet relatively few have been shown to regulate human cardiomyocyte differentiation. Here, we demonstrate an essential role of GATA6 antisense RNA 1 (GATA6-AS1) in cardiomyocyte differentiation from human pluripotent stem cells (hPSCs). GATA6-AS1 is adjacent to cardiac transcription factor GATA6. We found that GATA6-AS1 was nuclear-localized and transiently upregulated along with GATA6 during the early stage of cardiomyocyte differentiation. The knockdown of GATA6-AS1 did not affect undifferentiated cell pluripotency but inhibited cardiomyocyte differentiation, as indicated by no or few beating cardiomyocytes and reduced expression of cardiomyocyte-specific proteins. Upon cardiac induction, the knockdown of GATA6-AS1 decreased GATA6 expression, altered Wnt-signaling gene expression, and reduced mesoderm development. Further characterization of the intergenic region between genomic regions of GATA6-AS1 and GATA6 indicated that the expression of GATA6-AS1 and GATA6 were regulated by a bidirectional promoter within the intergenic region. Consistently, GATA6-AS1 and GATA6 were co-expressed in several human tissues including the heart, similar to the mirror expression pattern of GATA6-AS1 and GATA6 during cardiomyocyte differentiation. Overall, these findings reveal a previously unrecognized and functional role of lncRNA GATA6-AS1 in controlling human cardiomyocyte differentiation.

Keywords: RNA-seq; cardiomyocyte; differentiation; hPSC; hiPSC; lncRNA.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation*
  • Cell Line
  • GATA6 Transcription Factor / genetics
  • Humans
  • Induced Pluripotent Stem Cells / cytology*
  • Induced Pluripotent Stem Cells / metabolism
  • Myocytes, Cardiac / cytology*
  • Myocytes, Cardiac / metabolism
  • RNA, Antisense / genetics*
  • RNA, Antisense / metabolism
  • RNA, Long Noncoding / genetics*
  • RNA, Long Noncoding / metabolism

Substances

  • GATA6 Transcription Factor
  • GATA6 protein, human
  • RNA, Antisense
  • RNA, Long Noncoding