Mesenchymal stromal cells (MSCs) constitute a heterogeneous population of stromal cells with immunomodulatory and regenerative properties that support their therapeutic use. MSCs isolated from many tissue sources replicate vigorously in vitro and maintain their main biological properties allowing their widespread clinical application. To date, most MSC-based preclinical and clinical trials targeted immune-mediated and inflammatory diseases. Nevertheless, MSCs have antiviral properties and have been used in the treatment of various viral infections in the last years. Here, we revised in detail the biological properties of MSCs and their preclinical and clinical applications in viral diseases, including the disease caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection (COVID-19). Notably, rapidly increasing numbers of MSC-based therapies for COVID-19 have recently been reported. MSCs are theoretically capable of reducing inflammation and promote lung regeneration in severe COVID-19 patients. We critically discuss the rationale, advantages and disadvantages of MSC-based therapies for viral infections and also specifically for COVID-19 and point out some directions in this field. Finally, we argue that MSC-based therapy may be a promising therapeutic strategy for severe COVID-19 and other emergent respiratory tract viral infections, beyond the viral infection diseases in which MSCs have already been clinically applied. Graphical Abstract.
Keywords: Acute respiratory distress syndrome; COVID-19; Cell therapy; Immunomodulation; Mesenchymal stromal cells; SARS-CoV-2; Viral diseases; Viral infections.