Identification of Quantitative Trait Loci Controlling High-Temperature Tolerance in Cucumber (Cucumis sativus L.) Seedlings

Plants (Basel). 2020 Sep 7;9(9):1155. doi: 10.3390/plants9091155.

Abstract

High temperature is one of the major abiotic stresses that affect cucumber growth and development. Heat stress often leads to metabolic malfunction, dehydration, wilting and death, which has a great impact on the yield and fruit quality. In this study, genetic analysis and quantitative trait loci (QTL) mapping for thermotolerance in cucumber seedlings was investigated using a recombinant inbred line (RILs; HR) population and a doubled haploid (DH; HP) population derived from two parental lines '65G' (heat-sensitive) and '02245' (heat-tolerant). Inheritance analysis suggested that both short-term extreme and long-term mild thermotolerance in cucumber seedlings were determined by multiple genes. Six QTLs for heat tolerance including qHT3.1, qHT3.2, qHT3.3, qHT4.1, qHT4.2, and qHT6.1 were detected. Among them, the major QTL, qHT3.2, was repeatedly detected for three times in HR and HP at different environments, explained 28.3% of the phenotypic variability. The 481.2 kb region harbored 79 genes, nine of which might involve in heat stress response. This study provides a basis for further identifying thermotolerant genes and helps understanding the molecular mechanism underlying thermotolerance in cucumber seedlings.

Keywords: QTL mapping; cucumber seedlings; thermotolerance.