Background: Acute myeloid leukemia (AML) is a hematopoietic malignancy in which antitumor immunity is impaired. The therapeutic management of AML requires understanding the mechanisms involved in the fragility and immune dysfunction of AML T lymphocytes.
Methods: In this study, T lymphocytes from healthy donors (HD) and AML patients were used. Extracellular vesicles (EVs) from leukemic cells were screened for their microRNA content and impact on T lymphocytes. Flow cytometry, transcriptomic as well as lentiviral transduction techniques were used to carry out the research.
Results: We observed increased cell death of T lymphocytes from AML patients. EVs from leukemia myeloid cell lines harbored several miRNAs, including miR-21, and were able to induce T lymphocyte death. Compared to that in HD, miR-21 was overexpressed in both the bone marrow fluid and infiltrating T lymphocytes of AML patients. MiR-21 induces T lymphocyte cell death by upregulating proapoptotic gene expression. It also increases the immunosuppressive profile of T lymphocytes by upregulating the IL13, IL4, IL10, and FoxP3 genes.
Conclusions: Our results demonstrate that miR-21 plays a significant role in AML T lymphocyte dysfunction and apoptosis. Targeting miR-21 may be a novel approach to restore the efficacy of the immune response against AML.
Keywords: AML; T lymphocytes; apoptosis; extracellular vesicles; immunosuppression; miR21.