Purpose: Multiparametric magnetic resonance imaging (mpMRI) is used widely for prostate cancer (PCa) evaluation. Approximately 35% of aggressive tumors, however, are not visible on mpMRI. We sought to identify the molecular alterations associated with mpMRI-invisible tumors and determine whether mpMRI visibility is associated with PCa prognosis.
Methods: Discovery and validation cohorts included patients who underwent mpMRI before radical prostatectomy and were found to harbor both mpMRI-visible (Prostate Imaging and Reporting Data System 3 to 5) and -invisible (Prostate Imaging and Reporting Data System 1 or 2) foci on surgical pathology. Next-generation sequencing was performed to determine differential gene expression between mpMRI-visible and -invisible foci. A genetic signature for tumor mpMRI visibility was derived in the discovery cohort and assessed in an independent validation cohort. Its association with long-term oncologic outcomes was evaluated in a separate testing cohort.
Results: The discovery cohort included 10 patients with 26 distinct PCa foci on surgical pathology, of which 12 (46%) were visible and 14 (54%) were invisible on preoperative mpMRI. Next-generation sequencing detected prioritized genetic mutations in 14 (54%) tumor foci (n = 8 mpMRI visible, n = 6 mpMRI invisible). A nine-gene signature (composed largely of cell organization/structure genes) associated with mpMRI visibility was derived (area under the curve = 0.89), and the signature predicted MRI visibility with 75% sensitivity and 100% specificity (area under the curve = 0.88) in the validation cohort. In the testing cohort (n = 375, median follow-up 8 years) there was no significant difference in biochemical recurrence, distant metastasis, or cancer-specific mortality in patients with predicted mpMRI-visible versus -invisible tumors (all P > .05).
Conclusion: Compared with mpMRI-invisible disease, mpMRI-visible tumors are associated with underexpression of cellular organization genes. mpMRI visibility does not seem to be predictive of long-term cancer outcomes, highlighting the need for biopsy strategies that detect mpMRI-invisible tumors.
© 2019 by American Society of Clinical Oncology.