This study aimed to evaluate the performance of real-time PCR (qPCR) and MALDI-TOF for accurate and timely detection of nontuberculous mycobacterium (NTM) from clinical isolates. We collected fifty NTM suspected Mycobacteria Growth Indicator Tube (MGIT) cultures and analysed the diagnostic performance of qPCR and VITEK MS using Line Probe Assay (LPA) GenoType CM (Common Mycobacteria) as gold standard. The qPCR assays targeting 16S rRNA, ITS and IS6110 genes were developed for the identification of NTM and Mycobacterium tuberculosis complex (MTBC). LPA GenoType CM, a PCR technique targeting 23S rRNA gene, followed by reverse hybridization and line probe technology identified 90% of Mycobacterium species including M. fortuitum (16%,n = 8), M. intracellulare (10%,n = 5), M. gordonae (10%,n = 5), M. xenopi (4%,n = 2), M. scrofulaceum (4%,n = 2), Mycobacterium additional species (AS) (32%,n = 16) and MTBC (14%,n = 7), qPCR detected 80% of Mycobacterium species (NTM, 66% (n = 33) and MTBC, 14% (n = 7)) and MALDI-TOF, 52% (M. fortuitum (12%,n = 6), M. intracellulare (10%, n = 5), M. simiae (8%,n = 4), M. gordonae (8%,n = 4), and MTBC (14%,n = 7)). Sensitivity of qPCR and MALDI-TOF was 88.9% and 57.8%, respectively with 100% specificity. The combination of qPCR and MALDI-TOF remains an appropriate test for timely diagnosis of Mycobacterium species. This may eventually assist to detect the cases that may have been missed by phenotypic tests and enhance the NTM diagnosis capability to improve effective patient management.
Keywords: Line probe assay; MALDI-TOF; Nontuberculous mycobacterium; Real-time PCR.
Copyright © 2020 Elsevier Ltd. All rights reserved.