The SW Japan arc built by subduction of the Philippine Sea (PHS) plate exhibits uneven distribution of volcanoes: thirteen Quaternary composite volcanoes form in the western half of this arc, Kyushu Island, while only two in the eastern half, Chugoku district. Reconstruction of the PHS plate back to 14 Ma, together with examinations based on thermal structure models constrained by high-density heat flow data and a petrological model for dehydration reactions suggest that fluids are discharged actively at depths of 90-100 km in the hydrous layer at the top of the old (> 50 Ma), hence, cold lithosphere sinking beneath Kyushu Island. In contrast, the young (15-25 Ma) oceanic crust downgoing beneath Chugoku district releases fluids largely at shallower depths, i.e. beneath the non-volcanic forearc, to cause characteristic tectonic tremors and low-frequency earthquakes (LFEs) and be the source of specific brine springs. Much larger amounts of fluids supplied to the magma source region in the western SW Japan arc could build more densely-distributed volcanoes.