A soft chemistry approach to the synthesis of single crystalline and highly pure (NH4)CoF3 for optical and magnetic investigations

J Chem Phys. 2020 Sep 14;153(10):104501. doi: 10.1063/5.0023343.

Abstract

A new ionothermal synthesis utilizing 1-alkyl-pyridinium hexafluorophosphates [CxPy][PF6] (x = 2, 4, 6) led to the formation of highly crystalline single-phase ammonium cobalt trifluoride, (NH4)CoF3. Although ammonium transition-metal fluorides have been extensively studied with respect to their structural and magnetic properties, multiple aspects remain unclear. For that reason, the obtained (NH4)CoF3 has been investigated over a broad temperature range by means of single-crystal and powder x-ray diffraction as well as magnetization and specific heat measurements. In addition, energy-dispersive x-ray and vibrational spectroscopy as well as thermal analysis measurements were undertaken. (NH4)CoF3 crystallizes in the cubic perovskite structure and undergoes a structural distortion to a tetragonal phase at 127.7 K, which also is observable in the magnetic susceptibility measurements, which has not been observed before. A second magnetic phase transition occurring at 116.9 K is of second-order character. The bifurcation of the susceptibility curves indicates a canted antiferromagnetic ordering. At 2.5 K, susceptibility measurements point to a third phase change for (NH4)CoF3.