The relationship between long-term intensive training and brain plasticity in gymnasts has recently been reported. However, the relationship between abilities in different gymnastic events and brain structural changes has not been explored. This study aimed to evaluate the correlation between world-class gymnasts (WCGs)' specific abilities in different gymnastics events and their gray matter (GM) volume. Ten right-handed Japanese male WCGs and 10 right-handed gender- and age-matched controls with no history of gymnastic training participated in this study. Whole brain three-dimensional T1-weighted images (magnetization-prepared rapid gradient-echo sequence) with 0.90 mm3 voxels were obtained using a 3 T-MRI scanner from each subject. Volume-based morphometry (VolBM) was used to compare GM volume differences between WCGs and controls. We then explored the correlation between specific gymnastic abilities using different gymnastic apparatuses, and GM volume. Significantly higher GM volumes (false discovery rate-corrected p < 0.05) in the inferior parietal lobule, middle temporal gyrus, precentral gyrus, rostral middle frontal gyrus, and superior frontal gyrus were demonstrated in WCGs, compared with controls using VolBM. Moreover, significant positive correlations were observed between brain regions and the difficulty scores for each gymnastic event, for example, rings and inferior parietal lobule and parallel bars and rostral middle frontal gyrus. These results may reflect the neural basis of an outstanding gymnastic ability resulting from brain plasticity in areas associated with spatial perception, vision, working memory, and motor control.
Keywords: Brain plasticity; Difficulty score; Magnetic resonance imaging; Volume-based morphometry.