Background: The objective of this study was to explore the benefit of 18F-AlF-NOTA-PRGD2 positron emission tomography/computed tomography (denoted as 18F-RGD PET/CT) imaging for determining the clinical pathologic features of non-small cell lung cancer (NSCLC).
Methods: Seventy-two patients with NSCLC (37 cases of adenocarcinoma and 35 cases of squamous carcinoma) were enrolled to receive 18F-RGD PET/CT scanning pretreatment. The peak standard uptake value (SUVpeak), mean standard uptake value (SUVmean), angiogenic tumor volume (ATV) and total lesion angiogenesis (TLA) of tumors were determined using an automated contouring program. Cases were classified according to the tumor, lymph node, metastasis (TNM) stage.
Results: Significant differences in ATV and TLA were observed among T1, T2, T3 and T4 cases (ATV, P=0.000; TLA, P=0.000). ATV and TLA also differed significantly among cases of clinical stage I, II, III and IV (ATV, P=0.002; TLA, P=0.011). However, no significant differences in any values were observed between stage III and IV NSCLC cases (SUVpeak, P=0.675; SUVmean, P=0.668; ATV, P=0.52; TLA, P=0.634). All assessed values were higher in squamous cell carcinoma cases than in adenocarcinoma cases (SUVpeak, P=0.045; SUVmean, P=0.014; ATV, P=0.003; TLA, P=0.001). For clinical stage III and IV cases specifically, SUVpeak, SUVmean, and TLA were higher for squamous cell carcinoma than for adenocarcinoma (SUVpeak, P=0.015; SUVmean, P=0.009; TLA, P=0.036).Conclusions: 18F-RGD PET/CT imaging revealed the presence of increased angiogenesis in the tumor microenvironment of NSCLC, especially squamous cell carcinoma, and thus may be valuable in planning therapeutic regimens for individual patients.
Keywords: 18F-RGD PET/CT; angiogenesis; characteristics; non-small cell lung cancer (NSCLC).
2020 Translational Lung Cancer Research. All rights reserved.