Background: Disruption of the anterior inferior tibiofibular ligament (AITFL), posterior inferior tibiofibular ligament (PITFL), and interosseous membrane (IOM) is a predictive measure of residual symptoms after an ankle injury. Controversy remains regarding the ideal fixation technique for early return to sport, which requires restoration of tibiofibular kinematics with early weightbearing.
Purpose: To quantify tibiofibular kinematics after syndesmotic fixation with different tricortical screw and suture button constructs during simulated weightbearing.
Study design: Controlled laboratory study.
Methods: A 6 degrees of freedom robotic testing system was used to test 9 fresh-frozen human cadaveric specimens (mean age, 65.1 ± 17.3 years). A 200-N compressive load was applied to the ankle, while a 5-N·m external rotation and a 5-N·m inversion moment were applied independently to the ankle at 0° of flexion, 15° and 30° of plantarflexion, and 10° of dorsiflexion. Fibular medial-lateral translation, anterior-posterior translation, and internal-external rotation relative to the tibia were tracked by use of an optical tracking system in the following states: (1) intact ankle; (2) AITFL, PITFL, and IOM transected ankle; (3) single-screw fixation; (4) double-screw fixation; (5) hybrid fixation; (6) single suture button fixation; and (7) divergent suture button fixation. Repeated-measures analysis of variance with Bonferroni correction was performed for statistical analysis.
Results: In response to the external rotation moment and axial compression, single tricortical screw fixation resulted in significantly higher lateral translation of the fibula compared with that of the intact ankle at 10° of dorsiflexion (P < .05). Suture button fixation resulted in significantly higher posterior translation of the fibula at 0° of flexion and 10° of dorsiflexion, whereas divergent suture button fixation resulted in higher posterior translation at only 0° of flexion (P < .05). In response to the inversion moment and axial compression, single tricortical screw and hybrid fixation significantly decreased lateral translation in plantarflexion, whereas double tricortical screw fixation and hybrid fixation significantly decreased external rotation of the fibula compared with that of the intact ankle at 15° of plantarflexion (P < .05).
Conclusion: Based on the data in this study, hybrid fixation with 1 suture button and 1 tricortical screw may most appropriately restore tibiofibular kinematics for early weightbearing. However, overconstraint of motion during inversion may occur, which has unknown clinical significance.
Clinical relevance: Surgeons may consider this data when deciding on the best algorithm for syndesmosis repair and postoperative rehabilitation.
Keywords: ankle syndesmosis; suture button; tricortical screw; weightbearing.
© The Author(s) 2020.