Introduction: Multiple myeloma (MM) is a hematological malignancy in which patients present with bone marrow infiltration of clonal terminally-differentiated plasma cells. Monoclonal protein in the serum and/or urine is frequently detected. Over the past decade, important progress has been made in the comprehension of disease biology and treatment personalization. Much work has been put into the development of chimeric antigen receptor (CAR) gene-modified T-cell therapy thought to be a promising therapeutic option for pluritreated patients with refractory MM.
Evidence acquisition: We performed an analysis of clinical trials registered at the international repository clinicaltrials.gov using "CAR" OR "CAR T" AND "multiple myeloma" as search terms to understand what were the antigens targeted by CAR T strategies and what was the trade-off of their exploitation. The search retrieved a list of 103 trials that was manually filtered to eliminate follow-up and observational or not-pertinent trials.
Evidence synthesis: Most studies employed anti-BCMA targeting either alone (62/94; 66%), or in combination with a second target (12/94; 13%). The second target most studied was SLAMF7 (CD319) explored by 4/94 (4%) clinical trials. Other antigens investigated and described here include: CD44v6, CD38, CD138, MUC1, CD56, CD19, Igk light chain, Lewis Y, CD229 and GPRC5D.
Conclusions: Targeting an appropriate antigen(s) is the key to both safety and efficacy of CAR T approaches in MM as there is dearth of tumor-specific antigens. Most antigens tested are merely enriched on MM cells. Working with tumor-enriched antigens requires careful assessment of the balance between harm (toxicity) and benefit (disease eradication) to the patient. This review provides an up-to-date overview of the avenues that are being explored.