Preliminary in vivo evidence of lower hippocampal synaptic density in cannabis use disorder

Mol Psychiatry. 2021 Jul;26(7):3192-3200. doi: 10.1038/s41380-020-00891-4. Epub 2020 Sep 24.

Abstract

Cannabis is one of the most commonly and widely used psychoactive drugs. The rates of cannabis misuse have been increasing. Therefore, understanding the effects of cannabis use on the brain is important. Adolescent and adult rodents exposed to repeated administration of cannabinoids show persistent microstructural changes in the hippocampus both pre- and post-synaptically. Whether similar alterations exist in human cannabis users, has not yet been demonstrated in vivo. Positron emission tomography (PET) and [11C]UCB-J, a radioligand for the synaptic vesicle glycoprotein 2A (SV2A), were used to study hippocampal synaptic integrity in vivo in an equal number (n = 12) of subjects with DSM-5 cannabis use disorder (CUD) and matched healthy controls (HC). Arterial sampling was used to measure plasma input function. [11C]UCB-J binding potential (BPND) was estimated using a one-tissue (1T) compartment model with centrum semiovale as the reference region. Hippocampal function was assessed using a verbal memory task. Relative to HCs, CUDs showed significantly lower [11C]UCB-J BPND in the hippocampus (~10%, p = 0.008, effect size 1.2) and also performed worse on the verbal memory task. These group differences in hippocampal BPND persisted after correction for volume differences (p = 0.013), and correction for both age and volume (p = 0.03). We demonstrate, for the first time, in vivo evidence of lower hippocampal synaptic density in cannabis use disorder. These results are consistent with the microstructural findings from experimental studies with cannabinoids in animals, and studies of hippocampal macrostructure in human with CUD. Whether the lower hippocampal synaptic density resolves with abstinence warrants further study.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Brain / metabolism
  • Hippocampus / metabolism
  • Marijuana Abuse* / diagnostic imaging
  • Nerve Tissue Proteins / metabolism
  • Positron-Emission Tomography
  • Pyridines

Substances

  • Nerve Tissue Proteins
  • Pyridines