Accuracy of Pulmonary Nodule Volumetry Using Noise-Optimized Virtual Monoenergetic Image and Nonlinear Blending Image Algorithms in Dual-Energy Computed Tomography: A Phantom Study

J Comput Assist Tomogr. 2020 Nov/Dec;44(6):847-851. doi: 10.1097/RCT.0000000000001102.

Abstract

Objective: The aim of the study was to assess accuracy of pulmonary nodule volumetry using noise-optimized virtual monoenergetic image (VMI+) and nonlinear blending image (NBI) algorithms in dual-energy computed tomography (DECT).

Methods: An anthropomorphic chest phantom with 10 simulated nodules (5 solid nodules and 5 ground-glass opacities) was scanned using DECT80/Sn140kV, DECT100/Sn140kV, and single-energy CT (SECT120kV/200mAs), respectively. The dual-energy images were reconstructed using VMI+ (70 keV) and NBI algorithms. The contrast-to-noise ratio and absolute percentage error (APE) of nodule volume were measured to assess image quality and accuracy of nodule volumetry. The radiation dose was also estimated.

Results: The contrast-to-noise ratio of SECT120kV/200mAs was significantly higher than that of NBI80/Sn140kV and VMI+80/Sn140kV (both corrected P < 0.05), whereas there were no significant differences between NBI100/sn140kV and SECT120kV/200mAs and between VMI+100/sn140kV and SECT120kV/200mAs (both corrected P > 0.05). The APE of SECT120kV/200mAs was significantly lower than that of NBI80/Sn140kV and VMI+80/Sn140kV in both types of nodules (all corrected P < 0.05), whereas there were no significant differences between VMI+100/sn140kV and SECT120kV/200mAs in solid nodules and between NBI100/Sn140kV and SECT120kV/200mAs in ground-glass opacities (both corrected P > 0.05). The radiation dose of DECT100/Sn140kV and DECT80/Sn140kV were significantly lower than that of SECT120kV/200mAs (both corrected P < 0.05).

Conclusions: The DECT100/sn140kV can ensure image quality and nodule volumetry accuracy with lower radiation dose compared with SECT120kV/200mAs. Specifically, the VMI+ algorithm could be used in solid nodules and NBI algorithm in ground-glass opacities.

MeSH terms

  • Image Processing, Computer-Assisted / methods*
  • Lung / diagnostic imaging
  • Phantoms, Imaging*
  • Radiography, Dual-Energy Scanned Projection / methods*
  • Reproducibility of Results
  • Solitary Pulmonary Nodule / diagnostic imaging*
  • Tomography, X-Ray Computed / methods*