The resource budget model for mast seeding hypothesizes that soil nutrients proximately influence reproduction. Plants in high soil nutrient (particularly N) areas are predicted to have lower reproductive variability over time and higher mean reproduction. While often examined theoretically, there are relatively few empirical tests of this hypothesis. We quantified cone production of 110 individual white spruce (Picea glauca) trees over seven years and quantified plant-available soil macronutrients (N, Ca, K, Mg, P, S) in natural forest conditions across three years with different cone crop conditions. Each of these plant-available soil nutrients were correlated across years (rs = 0.55-0.89; all > 0.81 for total-N); spatially, total-N availability varied 366-fold across trees. Plant-available soil nutrients did not influence variability or mean annual reproduction, contrary to nutrient perturbation experiments. We examined within-year nutrient and cone-production relationships, and observed significant positive relationships between reproduction and plant-available soil nutrients only in a low-reproduction year preceding a mast event. Both during a mast event and the following year, when overall cone production was very high or very low, there were no relationships. Both external drivers (e.g., weather) and internal resource budgets likely influence soil nutrient-reproduction relationships. These results suggest that plant-available soil nutrients may not be a large factor influencing mast-seeding patterns among individuals in this species.
Keywords: Mast seeding; Nitrogen; Nutrient availability; Reproduction; Resource budget.