Introduction: Gout is a type of painful inflammation initiated by the interactions between monosodium urate crystals and connective tissue. Xanthine oxidase (XO) catalyzes the oxidation of hypoxanthine to xanthine, then to uric acid. The primary treatments for gout include XO inhibitors. At present, allopurinol is the most used XO inhibitor for the treatment of gout. However, it can cause adverse effects commonly known as allopurinol hypersensitivity syndrome, thereby limiting its usage. Consequently, it is necessary to develop potent and less toxic inhibitors of XO. Chromolaena odorata is one of such plants under investigation for its diverse health benefits. Methods: Phytochemicals of C. odorata were screened against XO receptor, using molecular docking. The top five hit compounds of glide docking yield flavones scaffold which were subjected to induced fit docking (IFD) and absorption, distribution, metabolism, and excretion (ADME) studies. Results: The result showed that flavones scaffold of C. odorata can bind with higher affinity and lower free energy values when compared to that of the standard, allopurinol. The IFD scores of the flavones scaffold range from -1525.25 to -1527.99 kcal/mol. Conclusion: Our results have shown that flavones scaffold might have the potential to act as an effective drug candidate when compared to allopurinol in treating and/or preventing gout and some inflammatory condition.
Keywords: ADME; Flavones scaffold; Gout; Induced fit docking; Lipinski's rule of five; Xanthine oxidase.
© 2020 The Author(s).