Background: In this study, we investigate the capacity of two different non-invasive brain stimulation (NIBS) techniques (anodal transcranial direct current stimulation (anodal tDCS) and high-frequency transcranial random noise stimulation (hf-tRNS)) regarding the relationship between stimulation duration and their efficacy in inducing long-lasting changes in motor cortical excitability.
Methods: Fifteen healthy subjects attended six experimental sessions (90 experiments in total) and underwent both anodal tDCS of 7, 13, and 20 min duration, as well as high-frequency 1mA-tRNS of 7, 13, and 20 min stimulation duration. Sessions were performed in a randomized order and subjects were blinded to the applied methods.
Results: For anodal tDCS, no significant stable increases of motor cortical excitability were observed for either stimulation duration. In contrast, for hf -tRNS a stimulation duration of 7 min resulted in a significant increase of motor cortical excitability lasting from 20 to 60 min poststimulation. While an intermediate duration of 13 min hf-tRNS failed to induce lasting changes in motor cortical excitability, a longer stimulation duration of 20 min hf-tRNS led only to significant increases at 50 min poststimulation which did not outlast until 60 min poststimulation.
Conclusion: Hf-tRNS for a duration of 7 min induced robust increases of motor cortical excitability, suggesting an indirect proportional relationship between stimulation duration and efficacy. While hf-tRNS appeared superior to anodal tDCS in this study, further systematic and randomized experiments are necessary to evaluate the generalizability of our observations and to address current intensity as a further modifiable contributor to the variability of transcranial brain stimulation.
Keywords: 1 mA intensity; anodal transcranial direct current stimulation; high-frequency transcranial random noise stimulation; non-invasive brain stimulation; stimulation duration.
© 2020 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.