Mn-intercalated MoSe2 under pressure: Electronic structure and vibrational characterization of a dilute magnetic semiconductor

J Chem Phys. 2020 Sep 28;153(12):124701. doi: 10.1063/5.0018716.

Abstract

Intercalation offers a promising way to alter the physical properties of two-dimensional (2D) layered materials. Here, we investigate the electronic and vibrational properties of 2D layered MoSe2 intercalated with atomic manganese at ambient and high pressure up to 7 GPa by Raman scattering and electronic structure calculations. The behavior of optical phonons is studied experimentally with a diamond anvil cell and computationally through density functional theory calculations. Experiment and theory show excellent agreement in optical phonon behavior. The previously Raman inactive A2u mode is activated and enhanced with intercalation and pressure, and a new Raman mode appears upon decompression, indicating a possible onset of a localized structural transition, involving the bonding or trapping of the intercalant in 2D layered materials. Density functional theory calculations reveal a shift of the Fermi level into the conduction band and spin polarization in MnxMoSe2 that increases at low Mn concentrations and low pressure. Our results suggest that intercalation and pressurization of van der Waals materials may allow one to obtain dilute magnetic semiconductors with controllable properties, providing a viable route for the development of new materials for spintronic applications.