Soluble EGFR, a hepatokine, and adipsin, an adipokine, are biomarkers correlated with distinct aspects of insulin resistance in type 2 diabetes subjects

Diabetol Metab Syndr. 2020 Sep 29:12:83. doi: 10.1186/s13098-020-00591-7. eCollection 2020.

Abstract

Background: Insulin resistance can occur in all metabolic organs including the liver, adipose tissue, and skeletal muscles. Circulating soluble epidermal growth factor receptor (soluble EGFR) and adipsin levels are altered in obese diabetic mice and are possibly correlated with insulin resistance in both mice and humans. Here, we investigated the significance of soluble EGFR and adipsin as biomarkers for insulin resistance in Japanese subjects with type 2 diabetes.

Methods: We measured the soluble EGFR and adipsin levels in sera from 47 non-diabetic subjects and 106 subjects with type 2 diabetes using enzyme-linked immunosorbent assays (ELISAs) and analyzed the correlations between the soluble EGFR or adipsin levels and metabolic parameters in type 2 diabetes subjects. We also measured the gene expression levels of Egfr and Cfd (adipsin) in the liver, adipose tissue, and skeletal muscle in mice with/without obesity or diabetes.

Results: The soluble EGFR levels were correlated with the fasting blood glucose level (P = 0.010), HOMA-IR (P = 0.035), HbA1c level (P = 0.007), HDL-cholesterol level (P = 0.044), and FIB-4 index (P = 0.017) after adjustments for age, sex, and total cholesterol levels. These factors are known to be related to hepatic insulin resistance. The serum adipsin levels were correlated with BMI (P < 0.001), waist circumference (P < 0.001), fasting serum insulin level (P = 0.001), HOMA-IR (P = 0.009), CPR-index (P = 0.045), and FIB-4 index (P = 0.007) after adjustments for age, sex and eGFR levels. Abdominal adiposity leads to the potentiation of these factors. The expression of Egfr was abundant in the liver, while Cfd was predominantly expressed in adipose tissue in mice.

Conclusions: Soluble EGFR, a hepatokine, is correlated with insulin resistance in the liver, while adipsin, an adipokine, is associated with adipose insulin resistance.Trial registration: UMIN Clinical Trials Registry (www.umin.ac.jp), UMIN000020474. Registered 8 January 2016.

Keywords: Insulin resistance; Metabolic syndrome; Type 2 diabetes.