Diabetic nephropathy (DN) is a serious kidney disease resulted from diabetes. Dys-regulated proliferation and extracellular matrix (ECM) accumulation in mesangial cells contribute to DN progression. In this study, we tested expression level of MIAT in DN patients and mesangial cells treated by high glucose (HG). Up-regulation of MIAT was observed in DN. Then, functional assays displayed that silence of MIAT by siRNA significantly repressed the proliferation and cycle progression in mesangial cells induced by HG. Meanwhile, we found that collagen IV, fibronectin and TGF-β1 protein expression was obviously triggered by HG, which could be rescued by loss of MIAT. Then, further assessment indicated that MIAT served as sponge harbouring miR-147a. Moreover, miR-147a was decreased in DN, which exhibited an antagonistic effect of MIAT on modulating mesangial cell proliferation and fibrosis. Moreover, bioinformatics analysis displayed that E2F transcription factor 3 (E2F3) could act as direct target of miR-147a. We demonstrated that E2F3 was greatly increased in DN and the direct binding association between miR-147a and E2F3 was evidenced using luciferase reporter assay. In summary, our data explored the underlying mechanism of DN pathogenesis validated that MIAT induced mesangial cell proliferation and fibrosis via sponging miR-147a and regulating E2F3.
Keywords: E2F3; MIAT; diabetic nephropathy; miR-147a.
© 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.