Synthesis, Electronic Properties and Reactivity of [B12 X11 (NO2 )]2- (X=F-I) Dianions

Chemistry. 2020 Nov 17;26(64):14594-14601. doi: 10.1002/chem.202003537. Epub 2020 Oct 5.

Abstract

Nitro-functionalized undecahalogenated closo-dodecaborates [B12 X11 (NO2 )]2- were synthesized in high purities and characterized by NMR, IR, and Raman spectroscopy, single crystal X-diffraction, mass spectrometry, and gas-phase ion vibrational spectroscopy. The NO2 substituent leads to an enhanced electronic and electrochemical stability compared to the parent perhalogenated [B12 X12 ]2- (X=F-I) dianions evidenced by photoelectron spectroscopy, cyclic voltammetry, and quantum-chemical calculations. The stabilizing effect decreases from X=F to X=I. Thermogravimetric measurements of the salts indicate the loss of the nitric oxide radical (NO. ). The homolytic NO. elimination from the dianion under very soft collisional excitation in gas-phase ion experiments results in the formation of the radical [B12 X11 O]2-. . Theoretical investigations suggest that the loss of NO. proceeds via the rearrangement product [B12 X11 (ONO)]2- . The O-bonded nitrosooxy structure is thermodynamically more stable than the N-bonded nitro structure and its formation by radical recombination of [B12 X11 O]2-. and NO. is demonstrated.

Keywords: boron clusters; electronic stability; gas-phase reactions; mass spectrometry; nitro group; radical ions.