Food security in a warming world is a grave concern for rapidly growing impoverished populations. Low-latitude inland fisheries provide protein for millions of rural poor, yet the impacts of high-frequency climate oscillations on these aquatic ecosystems are unknown. Here, we present a sub-annual-to-annual resolution paleolimnological reconstruction of upwelling, productivity, and algal composition at Lake Tanganyika, one of Africa's largest landlocked fisheries. The data reveal increases in diatom production at centennial-scale solar irradiance maxima, and interannual variability in upwelling linked to La Niña. Our study shows that interactions between global climatic controls and El Niño-Southern Oscillation teleconnections exert profound influences on the foundation of Lake Tanganyika's food web. Adapting long-term management practices to account for high-frequency changes in algal production will help safeguard inland fish resources.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).