Reacted with methylglyoxal (MGO), murine Aβ(1-40) (mAβ) produced significantly less superoxide anion (O2•-) compared to human Aβ(1-40) (hAβ). The reactions of MGO with mAβ(R13H), hAβ(H13F), Nα-acetyl-l-lysine, and Nα-acetyl-l-arginine implied that the lack of His13 in mAβ prohibits its Lys16 residue from reacting to produce cross-linked reaction products and O2•-. Our results suggest that murine brains are under less oxidative stress than human brains, which may be one of the reasons why rodents do not develop AD-like symptoms, and which provides further insight into a chemical mechanism for the development of AD in humans.
Keywords: Alzheimer’s disease; Glycation; Human amyloid beta (hAβ); Methylglyoxal (MGO); Murine amyloid beta (mAβ); Oxidative stress.
Copyright © 2020 Elsevier Inc. All rights reserved.