Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection

Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26915-26925. doi: 10.1073/pnas.2001046117. Epub 2020 Oct 12.

Abstract

Zoonotic coronaviruses represent an ongoing threat, yet the myriads of circulating animal viruses complicate the identification of higher-risk isolates that threaten human health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered, highly pathogenic virus that likely evolved from closely related HKU2 bat coronaviruses, circulating in Rhinolophus spp. bats in China and elsewhere. As coronaviruses cause severe economic losses in the pork industry and swine are key intermediate hosts of human disease outbreaks, we synthetically resurrected a recombinant virus (rSADS-CoV) as well as a derivative encoding tomato red fluorescent protein (tRFP) in place of ORF3. rSADS-CoV replicated efficiently in a variety of continuous animal and primate cell lines, including human liver and rectal carcinoma cell lines. Of concern, rSADS-CoV also replicated efficiently in several different primary human lung cell types, as well as primary human intestinal cells. rSADS-CoV did not use human coronavirus ACE-2, DPP4, or CD13 receptors for docking and entry. Contemporary human donor sera neutralized the group I human coronavirus NL63, but not rSADS-CoV, suggesting limited human group I coronavirus cross protective herd immunity. Importantly, remdesivir, a broad-spectrum nucleoside analog that is effective against other group 1 and 2 coronaviruses, efficiently blocked rSADS-CoV replication in vitro. rSADS-CoV demonstrated little, if any, replicative capacity in either immune-competent or immunodeficient mice, indicating a critical need for improved animal models. Efficient growth in primary human lung and intestinal cells implicate SADS-CoV as a potential higher-risk emerging coronavirus pathogen that could negatively impact the global economy and human health.

Keywords: One Health; SADS; coronavirus; emerging infectious disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Monophosphate / analogs & derivatives
  • Adenosine Monophosphate / pharmacology
  • Alanine / analogs & derivatives
  • Alanine / pharmacology
  • Alphacoronavirus / genetics
  • Alphacoronavirus / growth & development
  • Alphacoronavirus / physiology*
  • Animals
  • Cells, Cultured
  • Chlorocebus aethiops
  • Coronavirus Infections / transmission
  • Coronavirus Infections / virology*
  • Disease Susceptibility / virology*
  • Gene Expression
  • Host Specificity
  • Humans
  • Luminescent Proteins / genetics
  • Mice
  • Vero Cells
  • Virus Replication* / drug effects

Substances

  • Luminescent Proteins
  • remdesivir
  • Adenosine Monophosphate
  • Alanine

Supplementary concepts

  • Swine acute diarrhea syndrome coronavirus