Proteomics has played an important role in elucidating the fundamental processes occuring in living cells. Translating these methods to metallodrug research ('metalloproteomics') has provided a means for molecular target identification of metal-based anticancer agents which should signifcantly advance the research field. In combination with biological assays, these techniques have enabled the mechanisms of action of metallodrugs to be linked to their interactions with molecular targets and aid understanding of their biological properties. Such investigations have profoundly increased our knowledge of the complex and dynamic nature of metallodrug-biomolecule interactions and have provided, at least for some compound types, a more detailed picture on their specific protein-binding patterns. This perspective highlights the progression of metallodrug proteomics research for the identification of non-DNA targets from standard analytical techniques to powerful metallodrug pull-down methods.