A progressive increase in copy number variation (CNV) characterizes the natural history of cutaneous melanoma progression toward later disease stages, but our understanding of genetic drivers underlying chromosomal arm-level CNVs remains limited. To identify candidate progression drivers, we mined the TCGA SKCM dataset and identified HDGF as a recurrently amplified gene whose high mRNA expression correlates with poor patient survival. Using melanocyte-specific overexpression in the zebrafish BRAFV600E -driven MiniCoopR melanoma model, we show that HDGF accelerates melanoma development in vivo. Transcriptional analysis of HDGF compared to control EGFP tumors showed the activation of endothelial/angiogenic pathways. We validated this observation using an endothelial kdrl:mCherry reporter line which showed HDGF to increases tumor vasculature. HDGF is frequently co-altered with the established melanoma driver SETDB1. Both genes are located on chromosome 1q, and their co-amplification is observed in up to 13% of metastatic melanoma. TCGA patients with both genes amplified and/or overexpressed have a worse melanoma specific survival. We tested co-expression of HDGF and SETDB1 in the MiniCoopR model, which resulted in faster and more aggressive melanoma development than either gene individually. Our work identifies the co-amplification of HDGF and SETDB1 as a functional driver of melanoma progression and poor patient prognosis.
© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.