Comparisons of Transcriptome Profiles from Bacillus subtilis Cells Grown in Space versus High Aspect Ratio Vessel (HARV) Clinostats Reveal a Low Degree of Concordance

Astrobiology. 2020 Dec;20(12):1498-1509. doi: 10.1089/ast.2020.2235. Epub 2020 Oct 19.

Abstract

Although clinostats have long been used in space microbiology studies as ground-based analogs of spaceflight, few studies to date have systematically compared -omics data from clinostats versus spaceflight. This study compared the transcriptomic response of the Gram-positive bacterium Bacillus subtilis flown in space with corresponding transcriptomes derived from 2-D clinostat (High Aspect Ratio Vessel: HARV) experiments performed under the same conditions of bacterial strain, growth medium, temperature, and incubation time. High-quality total RNA (RNA Integrity Number >9.6) was isolated from multiple biological replicates from each treatment, transcripts were quantified by RNA-seq, and raw data was processed through a previously described standardized bioinformatics pipeline. Transcriptome data sets from spaceflight-grown and corresponding clinostat-grown cells were compared by using three different methods: (i) principal component analysis, (ii) analysis of differentially expressed genes, and (iii) gene set enrichment analysis of KEGG pathways. All three analyses found a low degree of concordance between the spaceflight and corresponding clinostat transcriptome data sets, ranging from 0.9% to 5.3% concordance. These results are in agreement with prior studies that also revealed low concordances between spaceflight and clinostat transcriptomes of the Gram-negative bacteria Rhodospirillum rubrum and Pseudomonas aeruginosa. The results are discussed from the perspective of several potential confounding factors, and suggestions are offered with the aim of achieving increased concordance between clinostat and spaceflight data.

Keywords: Bacillus subtilis; Clinostat; HARV; RPM; Simulated microgravity; Spaceflight; Transcriptomics.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacillus subtilis* / genetics
  • Space Flight*
  • Transcriptome*
  • Weightlessness*