Habitat complexity and lifetime predation risk influence mesopredator survival in a multi-predator system

Sci Rep. 2020 Oct 20;10(1):17841. doi: 10.1038/s41598-020-73318-3.

Abstract

Variability in habitat selection can lead to differences in fitness; however limited research exists on how habitat selection of mid-ranking predators can influence population-level processes in multi-predator systems. For mid-ranking, or mesopredators, differences in habitat use might have strong demographic effects because mesopredators need to simultaneously avoid apex predators and acquire prey. We studied spatially-explicit survival of cheetahs (Acinonyx jubatus) in the Mun-Ya-Wana Conservancy, South Africa, to test hypotheses related to spatial influences of predation risk, prey availability, and vegetation complexity, on mesopredator survival. For each monitored cheetah, we estimated lion encounter risk, prey density, and vegetation complexity within their home range, on short-term (seasonal) and long-term (lifetime) scales and estimated survival based on these covariates. Survival was lowest for adult cheetahs and cubs in areas with high vegetation complexity on both seasonal and lifetime scales. Additionally, cub survival was negatively related to the long-term risk of encountering a lion. We suggest that complex habitats are only beneficial to mesopredators when they are able to effectively find and hunt prey, and show that spatial drivers of survival for mesopredators can vary temporally. Collectively, our research illustrates that individual variation in mesopredator habitat use can scale-up and have population-level effects.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acinonyx / physiology*
  • Animals
  • Ecosystem*
  • Food Chain
  • Population Dynamics
  • Predatory Behavior*
  • South Africa