Emissions of secondary products through reactions of oxidants, ozone (O3), and hydroxyl radical (·OH) with human skin lipids have become increasingly important in indoor environments. Here, we evaluate the secondary organic compounds formed through heterogeneous reactions of gaseous O3 with hand skin lipids by using a high-resolution quadrupole Orbitrap mass spectrometer coupled to a commercial secondary electrospray ionization (SESI) source. More than 600 ions were detected over a period of less than 40 min real-time measurements, among which 53 ions were characterized with a significant increasing trend in signal intensity at the presence of O3. Based on the detected ions, we suggest detailed reaction pathways initiated by ozone oxidation of squalene that results in primary and secondary ozonides; we noticed for the first time that these products may be further cleaved by direct reaction of nucleophilic ammonia (NH3), emitted from human skin. Finally, we estimate the fate of secondarily formed carbonyl compounds with respect to their gas-phase reactions with ·OH, O3, and NO3 and compared with their removal by air exchange rate (AER) with outdoors. The obtained results suggest that human presence is a source of an important number of organic compounds, which can significantly influence the air quality in indoor environments.