Atherosclerosis is the main killer in the west and therefore a major health challenge today. Total serum cholesterol and lipoprotein concentrations, used as clinical markers, fail to predict the majority of cases, especially between the risk scale extremes, due to the high complexity in lipoprotein structure and composition. In particular, low-density lipoprotein (LDL) plays a key role in atherosclerosis development, with LDL size being a parameter considered for determining the risk for cardiovascular diseases. Determining LDL size and structural parameters is challenging to address experimentally under physiological-like conditions. This article describes the biochemistry and ultrastructure of normolipidemic and hypertriglyceridemic LDL fractions and subfractions using small-angle X-ray scattering. Our results conclude that LDL particles of hypertriglyceridemic compared to healthy individuals 1) have lower LDL core melting temperature, 2) have lower cholesteryl ester ordering in their core, 3) are smaller, rounder and more spherical below melting temperature, and 4) their protein-containing shell is thinner above melting temperature.
Keywords: Cardiovascular diseases; Hypertriglyceridemia; LDL structure; LDL subfractionation; Low-density lipoprotein; Small-angle X-ray scattering.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.