Mesoscale structures in amorphous silks from a spider's orb-web

Sci Rep. 2020 Oct 23;10(1):18205. doi: 10.1038/s41598-020-74638-0.

Abstract

Of the 7-8 silk fibers making up an orb-web only the hierarchical structural organization of semicrystalline radial fibers -composed of major ampullate silk- has been studied in detail, given its fascinating mechanical features. While major ampullate silk's nanofibrillar morphology is well established, knowhow on mesoscale (> 50-100 nm) assembly and its contribution to mechanical performance is limited. Much less is known on the hierarchical structural organization of other, generally less crystalline fibers contributing to an orb-webs' function. Here we show by scanning X-ray micro&nanodiffraction that two fully amorphous, fine silk fibers from the center of an orb-web have different mesoscale features. One of the fibers has a fibrillar composite structure resembling stiff egg case silk. The other fiber has a skin-core structure based on a nanofibrillar ribbon wound around a disordered core. A fraction of nanofibrils appears to have assembled into mesoscale fibrils. This fiber becomes readily attached to the coat of major ampullate silk fibers. We observe that a detached fiber has ripped out the glycoprotein skin-layer containing polyglycine II nanocrystallites. The anchoring of the fiber in the coat suggests that it could serve for strengthening the tension and cohesion of major ampullate silk fibers.

MeSH terms

  • Animals
  • Microscopy, Atomic Force
  • Microscopy, Electron, Transmission
  • Silk / chemistry*
  • Spiders* / classification
  • X-Ray Diffraction / methods

Substances

  • Silk