Two novel series of 6-(4-benzamido-/4-phthalimido)-3-cyanopyridine derivatives were designed and synthesized as inhibitors of PIM-1 kinase. Based on cytotoxicity results via MTT assay against prostate carcinoma PC3, human hepatocellular carcinoma HepG2 and breast adenocarcinoma MCF-7 cell lines, the most potent cytotoxic cyanopyridine hits, 6, 7, 8, 12 and 13 were 1.5-3.3 times more inhibitor of cell proliferation than the reference standard, 5-FU. Selectivity profile of the latter compounds on normal human cells (WI-38), was executed, indicating that they are highly selective (IC50 > 145 μM) in their cytotoxic effect. The promising compounds were further evaluated as PIM-1 kinase inhibitors. These compounds elicited remarkable inhibition of PIM-1 kinase (76.43-53.33%). Extensive studies on apoptosis were conducted for these compounds; they enhanced caspase-3 and boosted the Bax/Bcl-2 ratio 27-folds in comparison to the control. Molecular docking study of the most potent compound, 13 in PIM-1 kinase active site was consistent with the in vitro activity. Finally, prediction of chemo-informatic properties released compound 13 as the most promising ligand.
Keywords: Apoptosis; Cell cycle analysis; Cyanopyridine; Docking; PIM-1 kinase; Synthesis.
Copyright © 2020 Elsevier Inc. All rights reserved.