Regulation of RNA stability plays a crucial role in gene expression control. Deadenylation is the initial rate-limiting step for the majority of RNA decay events. Here, we show that RING finger protein 219 (RNF219) interacts with the CCR4-NOT deadenylase complex. RNF219-CCR4-NOT exhibits deadenylation activity in vitro. RNA-seq analyses identify some of the 2-cell-specific genes and the neuronal genes significantly downregulated upon RNF219 knockdown, while upregulated after depletion of the CCR4-NOT subunit CNOT10 in mouse embryonic stem (ES) cells. RNF219 depletion leads to impaired neuronal lineage commitment during ES cell differentiation. Our study suggests that RNF219 is a novel interacting partner of CCR4-NOT and required for maintenance of ES cell pluripotency.
Keywords: CCR4–NOT; RNF219; deadenylation; protein complex; stem cell differentiation.
© The Author(s) (2020). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.