Purpose: To develop a 3D whole-brain simultaneous T1/T2/T1ρ quantification method with MR Multitasking that provides high quality, co-registered multiparametric maps in 9 min.
Methods: MR Multitasking conceptualizes T1/T2/T1ρ relaxations as different time dimensions, simultaneously resolving all three dimensions with a low-rank tensor image model. The proposed method was validated on a phantom and in healthy volunteers, comparing quantitative measurements against corresponding reference methods and evaluating the scan-rescan repeatability. Initial clinical validation was performed in age-matched relapsing-remitting multiple sclerosis (RRMS) patients to examine the feasibility of quantitative tissue characterization and to compare with the healthy control cohort. The feasibility of synthesizing six contrast-weighted images was also examined.
Results: Our framework produced high quality, co-registered T1/T2/T1ρ maps that closely resemble the reference maps. Multitasking T1/T2/T1ρ measurements showed substantial agreement with reference measurements on the phantom and in healthy controls. Bland-Altman analysis indicated good in vivo repeatability of all three parameters. In RRMS patients, lesions were conspicuously delineated on all three maps and on four synthetic weighted images (T2-weighted, T2-FLAIR, double inversion recovery, and a novel "T1ρ-FLAIR" contrast). T1 and T2 showed significant differences for normal appearing white matter between patients and controls, while T1ρ showed significant differences for normal appearing white matter, cortical gray matter, and deep gray matter. The combination of three parameters significantly improved the differentiation between RRMS patients and healthy controls, compared to using any single parameter alone.
Conclusion: MR Multitasking simultaneously quantifies whole-brain T1/T2/T1ρ and is clinically promising for quantitative tissue characterization of neurological diseases, such as MS.
Keywords: MR Multitasking; Simultaneous T1/T2/T1ρ mapping; low-rank tensor; multiple sclerosis; quantitative tissue characterization.
© 2020 International Society for Magnetic Resonance in Medicine.