Identifying the targetome of a microRNA is key for understanding its functions. Cross-linking and immunoprecipitation (CLIP) methods capture native miRNA-mRNA interactions in cells. Some of these methods yield small amounts of chimeric miRNA-mRNA sequences via ligation of 5'-phosphorylated RNAs produced during the protocol. Here, we introduce chemically synthesized microRNAs (miRNAs) bearing 2'-, 3'-cyclic phosphate groups, as part of a new CLIP method that does not require 5'-phosphorylation for ligation. We show in a system that models miRNAs bound to their targets, that addition of recombinant bacterial ligase RtcB increases ligation efficiency, and that the transformation proceeds via a 3'-phosphate intermediate. By optimizing the chemistry underlying ligation, we provide the basis for an improved method to identify miRNA targetomes.
Keywords: 2′,3′-cyclic phosphate; CLIP; RtcB; ligation; microRNA.
© 2020 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.