Objective: In this article, the aims were to study the expression of heat shock factor 1 (HSF1) in patients with pancreatic cancer and to elucidate the relevance between HSF1, angiogenesis, clinicopathological factors, and prognosis.
Methods: Pancreatic cancer, paracancerous, and normal pancreatic tissues were collected. The HSF1 RNA and protein expressions were identified using quantitative real-time reverse transcription polymerase chain reaction and immunohistochemical staining. Associations of HSF1 and cluster of differentiation 34 with clinical variables and disease outcomes were investigated.
Results: Compared with the normal pancreatic and paracancerous tissue, HSF1 RNA and protein significantly showed higher expression in the pancreatic cancer tissue and was significantly associated with microvessel density. The high expression of HSF1 did not correspond to the patients' sex, age, carcinoembryonic antigen level, diameter of tumors, and locations; however, it corresponded significantly with carbohydrate antigen 19-9 level, lymph node metastasis, tumor node metastasis stage, differentiation degree, vascular invasion, and distant metastasis. The expression levels of HSF1 and cluster of differentiation 34 were significantly correlated with prognosis, disease specificity, and survival. The high expression of HSF1 would lead to worse prognosis and decrease in survival time and disease-free survival time.
Conclusions: HSF1 expression level in pancreatic cancer tissue could be an ideal prognostic biomarker for risk stratification and a potential therapeutic target for patients with pancreatic cancer.