Critical injury-induced immune suppression has been associated with adverse outcomes. This acquired form of immunosuppression is poorly understood in pediatric burn patients, who have infectious complication rates as high as 71%. Our primary objectives were to determine if thermal injury results in early innate immune dysfunction and is associated with increased risk for nosocomial infections (NI). We performed a prospective, longitudinal immune function observational study at a single pediatric burn center. Whole blood samples from burn patients within the first week of injury were used to assess innate immune function. Nosocomial infections were defined using CDC criteria. Immune parameters were compared between patients who went on to develop NI and those that did not. We enrolled a total of 34 patients with 12 developing a NI. Within the first 3 days of injury, children whom developed NI had significantly lower whole blood ex vivo LPS-induced TNFα production capacity (434 pg/mL vs 960 pg/mL, P = .0015), CD14+ monocyte counts (273 cells/µL vs 508 cells/µL, P = .01), and % HLA-DR expression on CD14+ monocytes (54% vs 92%, P = .02) compared with those that did not develop infection. Plasma cytokine levels did not have a significant difference between the NI and no NI groups. Early innate immune suppression can occur following pediatric thermal injury and appears to be a risk factor for the development of nosocomial infections. Plasma cytokines alone may not be a reliable predictor of the development of NI.
© The Author(s) 2020. Published by Oxford University Press on behalf of the American Burn Association. All rights reserved. For permissions, please e-mail: [email protected].