Background: Serotonin, originally identified as a neurotransmitter in mammals, functions as an antioxidant to scavenge cellular ROS in plants. In rice, the conversion of tryptamine to serotonin is catalyzed by SL (sekiguchi lesion), a member of cytochrome P450 monooxygenase family. The sl mutant, originated from rice cultivar Sekiguchi-asahi, exhibits spontaneous lesions, whereas its immune responses to pathogens have not been clearly characterized.
Results: Here we identified three allelic mutants of SL in an indica rice restore line Minghui 86 (MH86), named as sl-MH-1, - 2 and - 3, all of which present the typical lesions under normal growth condition. Compared with those in MH86, the serotonin content in sl-MH-1 is dramatically decreased, whereas the levels of tryptamine and L-trytophan are significantly increased. The sl-MH-1 mutant accumulates high H2O2 level at its lesion sites and is more sensitive to exogenous H2O2 treatment than the wild type. When treated with the reductant vitamin C (Vc), the lesion formation on sl-MH-1 leaves could be efficiently suppressed. In addition, sl-MH-1 displayed more resistant to both the blast fungus and blight bacteria, Pyricularia oryzae (P. oryzae, teleomorph: Magnaporthe oryzae) and Xanthomonas oryzae pv. Oryzae (Xoo), respectively. The pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) responses, like reactive oxygen species (ROS) burst and callose deposition, were enhanced in sl-MH-1. Moreover, loss function of SL resulted in higher resting levels of the defense hormones, salicylic acid and jasmonic acid. The RNA-seq analysis indicated that after P. oryzae infection, transcription of the genes involved in reduction-oxidation regulation was the most markedly changed in sl-MH-1, compared with MH86.
Conclusions: Our results indicate that SL, involving in the final step of serotonin biosynthesis, negatively regulates rice resistance against (hemi)biotrophic pathogens via compromising the PTI responses and defense hormones accumulation.
Keywords: Defense hormones; PAMP-triggered immunity; Pyricularia oryzae; Reactive oxygen species; Rice; Serotonin.