Livestock husbandry aims to manage the environment in which animals are reared to enable them to express their production potential. However, animals are often confronted with perturbations that affect their performance. Evaluating effects of these perturbations on animal performance could provide metrics to quantify and understand how animals cope with their environment, and therefore to better manage them. Body weight (BW) and milk yield (MY) dynamics over lactation may be used for this purpose. The goal of this study was to estimate an unperturbed performance trajectory using a differential smoothing approach on both MY and BW time series, and then to identify the perturbations and extract their phenotypic features. Daily MY and BW records from 490 primiparous Holstein cows from 33 commercial French herds were used. From the fitting procedure, estimated unperturbed performance trajectories of BW and MY were clustered into 3 groups. After the fitting procedure, 1,754 deviations were detected in the MY time series and 964 were detected in the BW time series across all cows. Overall, 425 of these deviations were detected during the same period (±10 d) in both MY and BW time series, 76 of which started at the same time. Results suggest that combining various individual dynamic measures and revealing the relationship that exists between them could be of great value in obtaining reliable estimates of resilience components in large populations.
Keywords: body weight; clustering smoothing; milk yield; perturbation; resilience.
Copyright © 2021 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.