Hepatocellular carcinoma (HCC) patients always have a background of cirrhosis. Aberrant epigenetic changes in cirrhosis provide a conductive environment for HCC tumorigenesis. Active enhancers (AEs) are essential for epigenetic regulation and play an important role in cell development and the progression of many diseases. However, the role of AEs in the progression from cirrhosis to HCC remains unclear. We systemically constructed a landscape of AEs that developed de novo in cirrhosis and were conserved in HCC, referred to as CL-HCC AEs. We observed significant upregulation of these CL-HCC AE-associated genes in cirrhosis and HCC, with no other epigenetic changes. Enrichment analysis of these CL-HCC AE-associated genes revealed enrichment in both hepatocyte-intrinsic tumorigenesis and tumor immune response, which might contribute to HCC tumorigenesis. Analysis of the diagnostic ability of these CL-HCC AE-associated genes provided a five-gene (THBS4, OLFML2B, CDKN3, GABRE, and HDAC11) diagnostic biomarker for HCC. Molecular subtype (MS) identification based on the CL-HCC AE-associated genes identified 3 MSs. Samples representing the 3 MSs showed differences in CL-HCC AE-associated gene expression levels, prognosis, copy number variation (CNV)/mutation frequencies, functional pathways, tumor microenvironment (TME) cell subtypes, immunotherapy responses and putative drug responses. We also found that the BET bromodomain inhibitor JQ1 downregulated the expression of CL-HCC AE-associated genes. Collectively, our results suggest that CL-HCC AEs and their associated genes contribute to HCC tumorigenesis and evolution, and could be used to distinguish the different landscapes of HCC and help explore the mechanism, classification, prediction, and precision therapy of HCC.
Keywords: Hepatocellular carcinoma; JQ1; active enhancer; biomarkers; cirrhosis; classification; immune dysfunction; immunotherapy.
AJCR Copyright © 2020.