Impact of wastewater infrastructure improvements on beach water fecal indicator bacteria levels in Monroe County, Florida

Sci Total Environ. 2021 Apr 1:763:143024. doi: 10.1016/j.scitotenv.2020.143024. Epub 2020 Oct 19.

Abstract

The effects of wastewater infrastructure construction on regional and local environments is unknown. This project evaluated the effects of such projects in Monroe County, Florida, an area that had undergone regional wastewater infrastructure improvements. We used fecal indicator bacteria (FIB) (fecal coliform and enterococci), as a proxy indicator of beach water quality for an 18-year period of record. At the highest level of aggregation, FIBs for all 17 beaches within the county were combined to evaluate trends on a yearly basis. At the lower level, yearly FIB trends were evaluated for each beach separately. FIB data on infrastructure project period (categorical variables: before, during, and after construction), and the influences of environmental conditions (quantitative variables of rainfall and temperature) were also evaluated. In the multiple regression models, enterococci and fecal coliform were significantly associated with rainfall (24 h, p < 0.0001) and water temperature (p < 0.0001) when only the quantitative variables were considered. When both categorical and quantitative variables were considered, project period was significant for enterococci (p < 0.0001) and fecal coliform (p < 0.0001), as was 24 h lagged rainfall. Overall, the most significant factors for both fecal coliform and enterococci were rainfall and project period. Considering all beaches, infrastructure projects seem to have the collective desired effects in the years following construction, as there were decreased FIBs measured at beach sites. Only through the aggregation of all projects and measurements at all beach sites could the decreases in FIB levels be observed. Local analysis is needed to explain anomalies from these general trends for specific beaches. This understanding of FIBs, their responses to environmental and project factors, and the need for aggregated and local site analysis can provide guidance to managers at other locations with similar issues of failing wastewater infrastructure and frequent FIB exceedances.

Keywords: Beaches; Enterococci; Fecal indicator bacteria; Septic; Sewage; Wastewater.

MeSH terms

  • Bacteria
  • Bathing Beaches*
  • Environmental Monitoring
  • Feces
  • Florida
  • Wastewater*
  • Water
  • Water Microbiology
  • Water Quality

Substances

  • Waste Water
  • Water